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In Jeffery-Hamel flow, the motion of a viscous incompressible fluid between rigid 
plane walls, unidirectional flow is impossible if the angle between the walls exceeds 
a critical value of 2a2 which depends on the Reynolds number. In this paper 
the nonlinear development of the flow near this critical value is studied through 
numerical solutions of the two-dimensional Navier- Stokes equations for flow in 
divergent channels with piecewise straight walls. It is found that if the angle between 
the walls exceeds 2~x2 then Jeffery Hamel flow does not occur, and the solution takes 
the form of a large-amplitude wave with eddies attached alternately to the upper and 
lower walls. When viewed in the appropriate coordinate system, far downstream the 
wave has constant wavelength and strength, although. physically, there is a linear 
increase in wavelength with distance downstream, i s .  the wavelength is proportional 
to the channel width. If the angle between the walls is less than 2a2, then the existence 
(or otherwise) of the wave depends on the conditions near the inlet, in particular the 
local geometry of the channel. Jeffery-Hamel flow is obtained downstream of the 
inlet for angles well below 2~x2, but close to but below the critical value, solutions have 
been obtained with the wave extending (infinitely) far downstream. The wavelengths 
obtained numerically were compared with those from linear theory with spatially 
developing steady modes. No agreement was found : the wavelengths from the steady 
Navier-Stokes solutions are significantly larger than that predicted by the theory. 
However, in other important aspects the results of this study are consistent with 
those from previous studies of the development/existence of Jeffery-Hamel flow, in 
particular as regards the importance of the upstream conditions and the subcritical 
nature of the spatial development of the flow near the critical boundary in the 
Reynolds number-wall angle parameter space. 

1. Introduction 
Jeffery-Hamel flows, which are among the best known exact solutions of the 

Navier-Stokes equations, give the steady two-dimensional laminar flow of an incom- 
pressible viscous fluid between two rigid planes with a line source or sink at the 
intersection between the planes. They depend on two dimensionless parameters: a, 
the semi-angle between the planes (by convention the angle between the planes is 
taken as 2a), and the Reynolds number Re. For such an apparently simple problem, 
there is a rich structure of possible flow patterns, with many possible solutions for 
each pair of values of x and Re, involving pure inflow or outflow, or flows with a 
combination of inflow and outflow. Since they were discovered by Jeffery (1915) and 
Hamel (1916), there have many studies of Jeffery-Hamel (JH hereafter) flow. Of 
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particular interest to the present study are those by Fraenkel (1962, 1963), Sobey & 
Drazin (1986) and Banks, Drazin & Zaturska (1988). 

In this paper we will consider the nonlinear development of the flow in non- 
uniform channels in which JH  flow might be expected to occur, by generating detailed 
numerical solutions of the two-dimensional Navier-Stokes equations. The geometry 
used is not that of two inclined planes, but of a uniform channel at the inlet, followed 
by straight walls at a constant angle. Both symmetric and asymmetric channels are 
considered, as are those with and without a step at the point the channel changes 
shape. When necessary (on numerical grounds), there is a second change of shape 
downstream so that there is a uniform outlet. The geometry for a asymmetric channel 
is shown in figure 1 below. A symmetric channel is generated by reflection about the 
lower wall. This geometry is relatively simple, but has a number of useful features, 
both in terms of the definition of the problem and in the details of the numerical 
scheme. The flow can develop naturally from the incoming Poiseuille flow, and, when 
necessary, revert to Poiseuille flow far downstream, giving straightforward upstream 
and downstream boundary conditions which are physically sensible. However, by 
making the channel sufficiently long, it is possible for JH flow to develop naturally 
in the non-parallel section of the channel. With a symmetric channel, a symmetric 
solution can be generated by forcing symmetry, and a symmetry breaking process will 
be necessary to produce a non-JH flow far downstream of the initial change in shape, 
whereas for an asymmetric channel, the asymmetric disturbance to the flow generated 
by the shape in shape must decay for JH  flow to occur. Finally, by increasing the 
size of the step, the effect of changing the size of the disturbance to the flow can 
be studied. As will be seen below, for certain regions in the (Re,a) parameter space, 
the details of the geometry will have a significant effect on the eventual flow pattern 
downstream of the change from parallel to non-parallel walls, i.e. far downstream of 
the change in shape near the inlet, more than one flow pattern can be generated for 
each set of (Re, a). 

Although JH flows exist both for convergent and divergent channels, we will be 
concerned mainly with divergent channels, as these produce much more interesting 
results in the present context, and unless specifically mentioned, all remarks below 
will be assumed to refer to divergent channels. 

Fraenkel (1962, 1963) classified JH  flows into five types, which will be discussed in 
more detail below, and suggested that they might be used to locally approximate the 
flow in channels with walls of sufficiently small curvature, noting that this would not 
require the channel to be symmetric. However, in a more general study of bifurcations 
in channel flow, Sobey and Drazin (1986) suggested that JH  flows which were not 
uni-directional, i.e. pure outflow, were unstable, and hence that JH  flow would not 
approximate flow in a channel when there was no appropriate JH  flow with radial 
velocity of only one sign (for any value of a (Re) there is a maximum value of Re (a), 
Re2 (Q) ,  for which pure outflow can exist). 

Banks et al. (1988) considered a range of perturbations of JH flow, using both 
linear and weakly non-linear theory. They found that symmetric JH  flows are unstable 
spatially unless they are uni-directional, and hence that the local approximation 
suggested by Fraenkel is useful only under limited conditions, in agreement with 
Sobey & Drazin. Banks et al. also found, considering both spatial and temporal 
stability of the flow, that in appropriate circumstances the exact form of the upstream 
and downstream conditions can have a significant effect on the flow. 

As JH flows have two independent parameters, a and Re, it is not possible to make 
a detailed investigation of the entire parameter space, if for no other reason, because 
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of the unrealistically large computational effort this would require. We have chosen to 
concentrate on Reynolds numbers of 0(102) close to the region (i.e. values of a )  where 
uni-directional flow is no longer possible, and the basic JH  flow has been predicted 
to be unstable. Reynolds numbers of this magnitude were chosen to be consistent 
with previous studies of flow in non-uniform channels which have shown the rich and 
complex structure of the flow patterns, particularly for unsteady flow where a strong 
‘vortex wave’ is commonly found, see e.g. Sobey (1985), Pedley & Stephanoff (1985), 
Tutty (1992) and Tutty & Pedley (1993). Steady flow in such channels, which have 
parallel walls for the most part, is usually much less interesting, with a relatively weak 
wave which decays rapidly downstream, see e.g. Armaly et al. (1993). However, as will 
be seen below, relatively small changes to the channel geometry can generate large 
changes in steady flow patterns, so that they resemble previously reported unsteady 
flows rather than the usual steady flow. Also, the parameter range chosen enables 
us to investigate the predictions of Sobey & Drazin (1986) and Banks et al. (1988) 
concerning the spatial stability of JH flow, and the applicability of these results to 
flow in non-uniform channels. In most aspects our results support their predictions. 
Of particular interest here is the prediction by Sobey & Drazin (1986) that the critical 
bifurcation leads to subcritical instability. In contrast, in a non-linear analysis of 
JH flow in a finite-length channel, Hamadiche, Scott & Jeandel (1994) found that 
the loss of stability is supercritical. We have found solutions with a large-amplitude, 
constant-strength wave in the non-parallel section of the channel, rather than JH 
flow, for both symmetric and asymmetric channels in regions of the (Re,  a )  parameter 
space for which stable symmetric JH  flows exist. We interpret these results as strongly 
supporting the hypothesis of Sobey & Drazin (1986), i.e. that JH flow becomes 
unstable subcritically. 

We note here that the references to ‘stability’ in this paper are not concerned with 
the development of perturbations to the flow in time, as is usual, but the spatial 
behaviour of steady flows. In particular, a flow is described as unstable if the flow 
far down the channel is not one of the possible JH flows. 

The formulation of the problem is given in $2, along with a brief discussion of the 
numerical method. Relevant aspects of JH flow are considered in $3, and the main 
results in $4, followed by a discussion of these results in $5 .  

2. Formulation 
The channel used for most of the calculations reported below has an expansion in 

the form of a step in the upper wall at x* = 0 with a change from a dimensional 
width of 2a’ to (2 + €)a*, where e may be zero, followed by a gradual change in 
width for X* > 0 with the upper wall at an angle of 2a to the lower wall, which 
is undisturbed, with a further change back to parallel walls at x* = La* (figure 1). 
The reversion to a parallel channel downstream of the step was adopted both to 
simplify the application of downstream boundary conditions in the numerical method 
and to produce a physically sensible problem when a is negative, while the angle 
was taken as 2a rather than a to be consistent with the usual formulation for JH  
flows. The geometry for a symmetric channel is obtained by reflection about the 
lower wall in figure 1, rescaled so that the channel still has width 2a* upstream, and a 
change in slope of a on each wall. The coordinates are non-dimensionalized on (half) 
the upstream channel width so that ( x , y )  = (x*,y*)/a*. The corresponding velocity 
components are Ui(u,v) where the reference velocity is LJb = Q*/2a* and Q* is the 
volumetric flow rate. 
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FIGURE 1. Channel geometry (not to scale). 

The Reynolds number Re is defined by 

Re = Q*/2v (2.1) 

where v is the kinematic viscosity. For steady flow the vorticity transport equation 
becomes 

where, as usual, 

and 

The boundary conditions are the usual no slip and zero normal velocity on the 
walls, 

= O  on y = y w ,  av dv y = - = O  on y = O  and 1 p = 2 ,  - 
dY an 

where n denotes the normal to the upper wall, and 

x < o  

2 + 6 + xtan2a, 0 < x < L 
2 + e + L t a n 2 a 7  x > L 

x = o ,  2 < y < 2 + c  

gives the position of the upper wall, and parallel flow upstream and downstream, i.e. 

where m 2 1. In practice Poiseuille flow is imposed at the inlet, and (2.7) with m = 2 
at the outlet. 

To solve the problem defined by (2.2)-(2.7), first we map the non-uniform channel 
onto a uniform channel of unit width using a combination of an exponential transform 
which maps the uniform channel to a half-plane, followed by a Schwarz-Christoffel 
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transform which maps the half-plane to the physical channel, i.e. 

(2.8) 

where z = x + iy and Z = X + iY. The corners ( x , y )  = (0,2), (0,2 + 6 )  and 
(L,  2 + e + L tan2a) in physical space map to Z = a, b and c respectively in the 
computational space, with Im(a)=lm(b)=Im(c)=l, so that the computational space 
is 0 < X < X,,,, 0 < Y d 1. 

With this mapping, the vorticity transport equation and the Poisson equation (2.2) 
and (2.3) become 

- dz = 2(1 - en(z-U))'/2(1 - e71(z-b))-1/2+2a/n( 1 - en(z-c))-2a/71 

dZ  

ac ac 1 2 u- + v- = -v i, ax ay Re (2.9) 

and 

respectively, where J = Idz/dZI2, V2 is now the Laplacian in computational space, 
and 

JC = -V2y (2.10) 

(2.11) 

The outflow boundary conditions now become d 2 y / d X 2  = d 2 ( / d X 2  = 0 at X = X,,,. 
The computational grid used was a uniform rectangular grid in ( X ,  Y ) .  A fourth- 

order finite difference scheme was used to solve (2.9)-(2.11) on this grid. This scheme 
is a straightforward steady version of the unsteady method used by Tutty 2% Pedley 
(1993), and details can be found there. For most of the detailed results below, 48 grid 
steps were used across the channel (this was previously found to be suitable for flows 
of the type considered in this study). The accuracy and behaviour of the numerical 
procedure is discussed below after the results have been presented. 

Note that, if the channel does not revert to a parallel-sided channel at x = L, then 
the final term in (2.8) should be dropped (equivalently, let Re(c)+ co in (2.8)). This 
gives 

dz 
- + Ke2az and J + K2e4aX as X -+ cc 
dZ 

(2.12) 

where K = 2 exp( i n ( b  - a )  - 2a(b - i)) is a positive real constant. 

3. Jeffery-Hamel flow 
Details of JH flow can be found in many references (e.g. Fraenkel 1962; Banks et 

al. 1988); here we consider only the aspects that are relevant to the current study. 
The standard geometry and coordinate system for JH flow are shown in figure 2(a). 
The (dimensional) streamfunction can be written as y*(r", 6) = aQ*G(q, a, Re) ,  where 
Re = Q*/Zv as before, q = #/a, and ( r* ,#)  are polar coordinates. The Navier-Stokes 
equations now reduce to 

G,,,, + 4a2G,, + 2aReG,G,, = 0 (3.1) 

G = +1 and G, = O  at q = f l .  (3.2) 

and the boundary conditions are 

Fraenkel (1962) classified the solutions of (3.1) and (3.2) into five types, I-V. Types 
I and 111 have pure symmetric outflow, and type 1111 pure symmetric inflow. Types 
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FIGURE 2. Geometry for Jeffery-Hamel flow (a) and basic Jeffery-Hamel flows (b) .  

IT, and 111, ( n  > 1) are symmetric but with regions of inflow and outflow, and 2n - 2 
zeros in the radial velocity. Types IV, and V, are asymmetric with regions of inflow 
and outflow with 2n - 1 zeros. Types IV, have outflow adjacent to the lower wall 
(and by implication inflow at the upper wall), while any V, is the mirror image of a 
IV,. Velocity profiles for the basic JH flows are shown schematically in figure 2(b). 
For any pair of values of the parameters, a and Re, there are many possible JH flows. 
However, Fraenkel imposed a further condition which led to uniqueness in a limited 
region of the (Re, a)-space, with analytic continuation between the types of solution 
in this region. Also, Fraenkel mapped the boundaries between the various types of 
solution, as shown in figure 3,  which includes both Fraenkel’s results and extensions 
of them from Buitrago (1983). 

For this study, the most important boundaries in figure 3 are 992 and B3, denoted by 
(Re2, a2) and (Re3, a3) respectively (the other boundaries are shown for completeness). 
On .9& where the wall shear is zero (GqV(&l) = 0), flows of types 111, 112, IV1 and 
V2 coincide. Below 8 2  pure symmetric outflow (type I or 111) is possible, and is the 
appropriate unique solution in Fraenkel’s formulation, while above 932  uni-directional 
flow cannot occur, and all solutions must have regions of inflow and outflow. Sobey 
& Drazin (1986) recognized that a subcritical pitchfork bifurcation occurs on 9Y2, 
with 111 stable subcritically (below B2), I12 unstable supercritically (above B2), and 
IVl and V1 unstable subcritically. This led Sobey & Drazin to question whether JH 
flows could be used to approximate flow in a channel with walls of small curvature 
when there was no uni-directional JH flow. 

Banks et al. (1988) studied the spatial development of arbitrary small steady 
two-dimensional perturbations of JH flow, using both linear and weakly non-linear 
theory. They found that type I and 111 flow were stable, and hence that symmetric JH 
flow could be used to approximate flow in a channel below B2, but not above where 
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FIGURE 3. Critical boundaries of Jeffery-Hamel flow in the (Re, a)-plane. 

112 is unstable. Also, Banks et al. suggested that, in a channel in which the angle 
between the walls varies, provided that a(x) does not exceed a’(Re) by too much or 
for too far downstream then the disturbances will ultimately decay downstream where 
a(x) < az(Re), and hence that JH flow may still be useful in such conditions. As we 
will see below, for our problem the upstream conditions play a crucial role in whether 
JH flow is re-established, consistent with the importance of the upstream conditions 
found by Banks et al.. In contrast, we find that the downstream conditions have a 
strictly local effect. 

For g3, Fraenkel showed that there is a singularity such that there is no continuation 
of the 112 flow as B3 is crossed from below, i.e. we have dG/aa ---f 00 as a + a3(Re), or 
equivalently, i3GldRe GO as Re + Re3(a). To be more precise, fixing CI and varying 
Re, the wall shear behaves as 

G,,(O, Re) = G,,(O, Re3) + K(Re3 - Re)”’ + ... as Re .--) Re3-, (3.3) 

where K is a positive constant. 
Asymptotically 

Re2 - 4 . 7 1 2 ~ ~ ’  and Re3 - 5.461~-’ for Re+l (3.4) 
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(Fraenkel 1962). Further details of 9 2 2  and &93 can be found in the tables given in 
Fraenkel (1962) or of g2 in Sobey & Drazin (1988). 

The description of JH flows given above, which is based on Fraenkel's (1962) 
classification, is consistent, but does not take full account of the detail and complexity 
of JH flows, particularly with respect to the multiple solutions. Using Newton's 
method with a second-order finite difference scheme, the behaviour of JH flow near 932 

has been investigated. To be consistent with the Navier-Stokes problems considered 
below, we take a = 2", which gives Re2 = 135 from (3.4). Starting with a sufficiently 
low Re (< 50) there was no difficulty in generating the 111 flow, and, by increasing 
Re, moving smoothly through &?2 to obtain the I12 solution which terminated at g3. 
However, IV1 and V1 solutions were also found for Re < Re2, and by increasing Re 
gradually they were tracked to the subcritical pitchfork bifurcation where types 111, 
112, IV1 and V1 coincide. By decreasing or increasing Re, we could then follow the 
111 or 112 flow, respectively, but not move directly back to the IV1 or V1 flow used 
to approach the bifurcation. Note that although there is no continuation of the 112 
solution as the &?3 boundary is crossed from below, this solution does not terminate 
at g 3 .  Rather there is a fold in the solution surface (see e.g. Banks et al., figure 4), and 
for Re close to but below Re3 there are two 112 solutions, the second with larger shear 
rates near the wall and J? negative in (3.3). This second 112 mode was tracked back to 
an Re value below one with wall shear rates of O( lo4). A number of other branches 
of the solution surface involving more complex JH flows were tracked in a similar 
manner. 

Three different coordinate systems have been introduced : physical (x, y ) ,  compu- 
tational ( X ,  Y), and for pure JH flow ( r* ,  0). There is however a direct connection 
between the last two away from the corners of the channel shown in figure 1. When 
(2.12) holds 

8 = a(2Y - 1), i.e. q = 2Y - 1, and r* K 2 ~ * e ~ ' ~ .  (3.5) 

As will be seen below, away from the corners the computational coordinates are the 
natural coordinate system in which to view the non-linear development of the flow. 

4. Navier-Stokes flow 
The Navier-Stokes problem defined above has four independent parameters : a, Re, 

e, and L. Investigating the full parameter space would be a formidable task. For- 
tunately, the results discussed above, in particular those of Sobey & Drazin (1986) 
and Banks et al. (1988), suggest that the most interesting results will be near or 
above the g2 boundary. In addition we will concentrate on channels in which a 
is small and where Re2 = 0(100), both to compare the results with unsteady flows 
in non-uniform channels at these Re, and because the results may be relevant to 
experimental situations where normal tolerances in producing apparatus may lead to 
channels with slightly non-parallel walls. 

As is well known from previous studies of steady flow in a channel with a step 
expansion but otherwise parallel walls (e.g. Armaly et al. 1983; Sobey 1985), at 
Reynolds numbers of O(100) a weak standing wave is generated downstream of the 
step, with one or more eddies, the largest and strongest of which is in the lee of 
the step. Compared with the waves which can be generated with unsteady flow in 
the same channel at the same Reynolds number, the steady wave has a much longer 
wavelength, and has fewer, weaker eddies. 
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FIGURE 4. Streamlines near the expansion for Re = 125. E = 2, and (a-d), 2 = -to, o", in, and 1". 
-2 < .Y < 30. 

Figure 4 shows streamlines for flow in a channel in which the width doubles at 

to parallel further downstream but the details do not significantly affect the flow in 
the region shown in figure 4. For all these flows Re < Rez(x), and in general the 
flow resembles that shown in previous studies: the main eddy is well developed, and 
when the walls are parallel (a = 00) there is also a small, very weak second eddy 
on the lower wall downstream of the main eddy. The second eddy does not exist 
when the upper wall has a small negative slope (figure 4a, SI = -+"), but bgth its 
length and strength increase rapidly when the upper wall takes a small positive slope 
(figure 4c,d). However, even for x = l o ,  when the second eddy extends from x = 18.4 
to x = 56.6 there is no sign of a third eddy. Also, figure 4 shows that both the length 
and (from the number of streamlines plotted) the strength of the main eddy increase 
as c( increases. In fact, as can be seen from figure 5,  the increase in length with CY 

is slightly greater than linear. For these cases, examination of the solutions showed 
that, downstream of the weak wave generated by the step but before the walls of the 
channel became parallel again, type 111 JH flow occurred, as expected. 

A similar set of calculations to those shown in figure 4 were performed for 
Re = 62.5. Similar behaviour was found, although the wave is much weaker such that 
even for a = 1" there was no sign of a second eddy. As expected, the primary eddy 
is shorter and weaker than with Re = 125, but again it increases in length slightly 
faster than linearly with a. 

For x = 2", Re = 125 < Re?, and again we might expect a weak wave with JH 
flow downstream of it. ( F o r  the moment assume that the channel does not change 
shape far downstream and hence that the walls are non-parallel at the outlet -- 

x = 0 ( e  = 2) for Re = 125 and x = -? 1 0  , O", 1 0  , and 1". The channel reverts 
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FIGURE 5. Eddy length against LY for e = 2 and: 0, Re = 62.5; + Re = 125. 

FIGURE 6. Streamlines near the expansion for Re = 125, LY = 2", E = 2, and (a) -2 < x < 67, 
( b )  -2 < x < 200, and ( c )  -2 < x < 2000. 

this will be discussed further below.) Figure 6 shows the streamlines for a = 2", 
Re = 125 and 6 = 2. In figure 6(a), as expected, there is an eddy in the lee of the 
step which is both stronger and longer than that shown in figure 4(d) with a much 
larger second eddy on the lower wall. However by replotting for larger ranges of 
x (figure 6b,c) we see that there is a sequence of eddies alternating on the upper 
and lower walls extending much further downstream. The streamlines for this case 
are plotted against the computational coordinates in figure 7(a), which shows a 
regular wave extending very far downstream (this calculation had X,,, = 300 which 
corresponds to x x 3 . 5 ~ 1 0 ' ~ ) .  From figure 7(a), the wave appears to have a constant 
wavelength and strength in computational space along virtually the entire channel. 
Detailed examination of the solution shows that this is indeed the case: figure 7(b) 
shows the streamlines for a section of the channel where successive flow structures 
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FIGURE 7. Streamlines in computational space for Re = 125, z = 2", and e = 2. (u)  0 < X < 300, 
( h )  180 ,< X < 200. 
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FIGURE 8. Lower-wall vorticity in computational space: J i  against X for Re = 125, cx = 2", and 
e = 2. 0 < X < 300. 

are graphically indistinguishable. Also, from (2.10) we see that if y has a regular 
pattern in computational space, then so should 35. Figure 8 shows 35 against X for 
the lower (straight) wall. This confirms the pattern of figure 7, with a wave that is 
essentially uniform along the channel downstream of the step. 

For this geometry Re = 150 lies between 6% and B3, and, in contrast to the case 
with Re = 125, JH flow might not be expected downstream of the step. Figure 9 
displays the streamlines in computational space. This shows a similar pattern to that 
of figure 7 for Re = 125, with a regular wave extending far downstream. The wave is 
clearly more complex than for Re = 125: the eddies have multiple cores and there are 
regions of secondary separation on the walls, as shown in figure 9(b). However, the 
wave now develops gradually, and approaches its final form asymptotically with X ,  
as can be seen in figure 9(a) and figure 10, which displays 35 against X for the lower 
wall. Close examination of the solution shows that the wave does not reach its final 
state until X is greater than 100 (see also figure 12). The wave is much stronger for 
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FIGURE 12. Eddy length over position (x) against X for c( = 2", E = 2, and: 0, Re = 125; 
f, Re = 150. 

attached. This is shown in figure 13, and it can be seen that the eddies are much 
stronger for Re = 150 than 125, and that for the smaller value of Re the wave has 
constant strength almost immediately downstream of the step, while for Re = 150 it 
asymptotes to constant strength for X > 100, consistent with the behaviour of the 
wall shear stress (figure 10). 

The step size was varied between zero and 2 for both Re = 125 and Re = 1.50. 
For Re = 125 and E = 1, the extended wave did not occur, and the Row was similar 
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x 
FIGURE 13. Eddy strength against X for LY = 2", e = 2, and: 0, Re = 125; f, Re = 150. 

x = o  x = 200 X=120 X=140 

FIGURE 14. Streamlines for Re = 150, LY = 2", and e = 0. (a) Computational space: 0 < X < 160, 
( b )  computational space: 120 < X < 140, ( c )  physical space: -10 < x < 200. 

to that shown in figure 4 with a limited disturbance generated by the step and JH 
flow downstream. For Re = 150, a wave was generated both for C= = 1 and zero. For 
the latter case figure 14(a) shows streamlines in computational space for the entire 
channel, figure 14(b) details in computational space near the outlet, and figure 14(c) 
in physical space near the change in geometry. Clearly, the wave will eventually take 
the same form as shown in figure 9 for e = 2, but it takes longer to develop, and close 
to the change in shape of the upper wall at x = 0 there is a gradual evolution of the 
flow with a long separation bubble formed on the lower wall. Also, in this channel 
X,,, = 160 and a second corner was included at X = 140 so that the walls were 
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parallel again for X > 140. It can be seen from figures 14(a) and 14(b) that there is 
very limited upstream influence from this change in geometry (this was found also in 
other runs), and that the wave decays quickly once the walls become parallel again, 
with Poiseuille flow re-established downstream of this corner. A detailed examination 
of the solution for E = 0 showed that the flow is not quite fully developed when the 
channel walls revert to parallel at X = 140 (small differences can be seen in the flow 
structures shown in figures 9h and 14b). This is not surprising given the geometry 
and the way the wave asymptotes to its final form for this Reynolds number when 
E = 2. However, calculations were also performed on a longer channel with E = 0, 
but with a grid step of 1/32 rather than 1/48 (to save computational effort), and 
in this case it was found that the final form of the wave was identical to that for 
E = 2 with this grid step (the dependence of the solution on the grid step is discussed 
below). 

A set of calculations was performed for a symmetric channel with no step, i.e. both 
walls changed shape at x = 0 so that they had a 2" slope for x > 0. For Re = 150 an 
extended wave was generated, with symmetry breaking near the change in geometry 
so that the first eddy was formed (arbitrarily) on the upper wall. In addition, in this 
case a symmetric solution which tended to 112 JH flow far downstream was obtained 
by explicitly forcing symmetry. Also, a number of calculations were performed for Re 
close to Re2 with e = 0, both for symmetric and asymmetric channels. No wave was 
found for Re < Rez = 135, even with Re = 134.5 when the channel was asymmetric 
and a converged solution with a fully developed wave obtained with a higher Re was 
used as the initial approximation to the solution. For Re = 135.5, which is just above 
Rez, a wave was found for the asymmetric channel, although even with X,,, = 300 
the wave developed very slowly with relatively few eddies. For the symmetric channel, 
again there was symmetry breaking, with an asymmetric disturbance growing slowly 
downstream of the change in geometry, eventually developing into a full non-linear 
wave. 

A further set of calculations was performed for a symmetric channel with a 2" 
slope on each wall, but with a step on each wall so that the channel doubled in 
width at x = 0. For Re = 120, there was symmetry breaking near the steps, as would 
be expected from the results for stepped channels with parallel walls (see e.g. Sobey 
1985), but the wave decayed downstream with the flow tending asymptotically to 111 
JH flow. In contrast, for Re = 125, which is still less than Rez, an extended wave 
of constant strength, similar to that shown in figures 6-8, was generated. Again, 
multiple solutions were found : a symmetric solution, generated by forcing symmetry, 
was converged to machine precision and was then used as the starting condition 
for a run in which the full channel was considered, leading to the solution with the 
extended wave. Note that in this case the perturbations to the symmetric flow which 
excite the instability must arise from the rounding errors inherent in the arithmetic 
procedure. 

A large number of runs were performed during this study. A summary of the more 
important results is given in table 1. The apparently anomalous results are those for 
c( = 5.73", Re = 45 and f = 2, and the different cases with cx = 2", Re = 125 and 
e = 2, where waves were found although these points are below 9Y2 in the (Re,a) 
parameter space. These results demonstrate that near g2 the generation/existence of 
a wave depends on the upstream conditions as well as on the values of Re and a, 
which is consistent with the predictions of Banks et a/. (1988). It is also consistent 
with the prediction of Sobey & Drazin (1986) that the bifurcation at 3?2 leads to a 
su bcritical instability. 
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CI Re E. Re > Rez(a) 
(deg.1 

1 125 2 No 
2 120 2 No 
2 125 2 No 
2 150 2 Yes 
2 125 1 No 
2 125 0 No 
2 134.5 0 No 
2 135.5 0 Yes 
2 150 0 Yes 
1 300 2 Yes 

5.73 45 2 No 
5.73 50 2 Yes 

Wave 

No 
No 
Yes 
Yes 
No 
No 
No 
Yes 
Yes 
Yes 
Yes 
Yes 

TABLE 1. Summary of results. The entries for CI = 2", 6 = 0 and Re = 134.5, 135.5 and 150, and 
CI = 2", F = 2 and Re = 120 and 125 cover both asymmetric and symmetric cases. 

Finally in this section, we wish to discuss the effect of some details of the numerical 
procedure on the results. The problem was defined in $2 with the channel walls revert- 
ing to parallel far downstream. However, in many of the calculations the downstream 
conditions d2y/dX2 = d 2 [ / d X 2  = 0 could be applied at the downstream boundary 
with non-parallel walls with very little effect on the solution except immediately ad- 
jacent to the boundary. For example, in figures 6-8 the walls are non-parallel at the 
outlet, but e.g. in figure 7(a) there is no noticeable effect of the downstream boundary 
condition on flow structures near the outlet. Where possible, non-parallel walls were 
used to the end of the computational domain. An exception was when E was zero, 
e.g. as in figure 14, when difficulties were encountered in converging the iterative 
procedure unless L was less than X,,,. Another, more significant, point concerns the 
convergence criterion used when calculating flow patterns near a bifurcation. Usually, 
with the code employed in this study, convergence is tested using the L, norm with 
the streamfunction, i.e. 

where m is the iteration count and j and k are the grid indices. However, the use of 
this convergence test with any fixed value of to1 was potentially highly deceptive. For 
example, for the calculation for a symmetric channel with E = 0, a = 2" (on each wall) 
and Re = 150, the norm in (4.1) decayed to less than 2xlO-I5, close to the machine 
precision of O( 10-l6), with an apparently symmetric solution, before the norm started 
to grow again as the wave was generated. However, examination of the solution 
when the iterative process was terminated using (4.1) with to1 = showed that 
although the flow far downstream of the change in shape was very close to a 112 
JH flow with the streamfunction largely independent of the (radial) distance along 
the channel, there was a very weak but definite oscillatory disturbance superposed 
on this solution. This disturbance grew slowly as the iterations proceeded beyond 
this stage, until eventually the full non-linear disturbance was generated. The initial 
disturbance was most noticeable along the centreline where there was a fluctuation 
in J(' of O(10-lo). In contrast, for some cases with non-parallel walls extending to 
the downstream boundary, the change in y as measured by (4.1) did not decay below 
O(lO-*) due to the effects of the downstream boundary condition, although it was 
clear that the solution had in fact converged. For this reason, detailed examination 

maxj,k I y$+') - y'z) I< to1 (4.1) 
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of the 'dynamic' behaviour of the solution as the iterations continued, as well as 
the size and behaviour of the L ,  measures of the change in the streamfunction 
and the vorticity, were used to determine convergence rather than a single formal 
test. In particular, if the flow is stable and a JH  flow exists, the behaviour of the 
solution along the (numerical) centreline was a sensitive indicator of convergence: for 
a symmetric solution the scaled vorticity J [  should be close to zero, while it should 
tend to zero asymptotically for an asymmetric solution. In contrast, the presence of 
a growing (oscillatory) disturbance along the centreline indicates an unstable flow. If 
the flow is unstable and a wave develops, then the change in vorticity on the walls 
can be used to monitor the final convergence of the numerical process. As well as 
the change in y and {, the residuals for the discrete form of the governing equations, 
(2.9) and (2.10), were calculated using an L2 norm. The behaviour of the residuals 
closely followed that of the L,, norm for the streamfunction, and showed that in all 
cases the finite difference equations were satisfied to a very fine tolerance. 

The results presented in detail above (figures 6-14) are with a square grid with a 
step of h = 1/48, while (some of) the others referred to in table 1 were for h = 1/32. 
A number of runs were performed to check the accuracy of the results presented: in 
particular, for Re = 150, a = 2", and 6 = 2, runs were performed with 1/16, 1/24, 
1/32, 1/40 and 1/48. An extended wave was generated in all cases, and comparison 
of the streamline patterns and the wall shear stress for these runs showed that there 
would be no substantial change in the solution with a finer grid, although there might 
be slight changes in the details. In addition, a set of calculations was performed for 
the subcritical case with Re = 125 in this geometry with h = 1/16, 1/24, 1/32 and 
1/48. In this case the extended wave was generated for the three finer grids, but not 
with h = 1/16, i.e. in practice the diffusive effect of the grid-related truncation error 
for h = 1/16 was sufficient to drop the effective Reynolds number below the critical 
Reynolds number for the generation of the extended wave,for this geometry (note that 
for Re = 120 we did not obtain an extended wave in this channel for any value of h).  
The diffusive effect of the truncation error is not unexpected, but we note, however, 
that if a grid of h = 1/32 rather than h = 1/48 had been used throughout the 
calculations, the same conclusions would have been drawn concerning the existence 
and general form and behaviour of the wave, although there would be some change in 
the details (e.g. the strength of the wave and the occurrence of secondary separation 
on the walls). In particular, no case was found where there was an extended wave for 
a crude grid which disappeared as the grid was refined. 

5.  Discussion 
Above we have presented numerical solutions of the steady Navier-Stokes equations 

for the flow in non-uniform channels in which JH  flow might be expected, subject 
to stability considerations. We have concentrated on flow near 6?2, which previous 
studies (Sobey & Drazin 1986; Banks et al. 1988) have given as the boundary for the 
spatial stability of JH flow. In general our results support this conjecture, and show 
that near B2 small changes in geometry or the Reynolds number can cause very large 
changes in the flow. 

For all combinations of (Re,%) above &I*, a disturbance to the flow developed in 
the streamwise direction, leading ultimately to a large-amplitude wave of constant 
wavelength and strength when viewed in the appropriate coordinate system. Below B2 
the situation was not as simple: for a channel with a change in the slope of the wall(s) 
at x = 0, but no step(s), JH flow was obtained just below .9&, but not just above. 
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In contrast, when the channel doubles in width at x = 0, the extended non-linear 
wave was generated for both symmetric and asymmetric channels at points in the 
parameter space significantly below B2 (e.g. a = 2”, Re = 125). This last result is 
consistent with several predictions of Sobey & Drazin (1986) and Banks et al. (1988), 
namely the importance of the upstream boundary conditions and the subcritical 
nature of the pitchfork bifurcation/stability limit at B2. Banks et al. also found that 
the boundary conditions at infinity (the outlet) affected the stability characteristics of 
the flow. However, in our calculations the effect of the downstream condition was 
strictly local, e.g. for E = 2, Re = 125, and a = 2”, the same flow was found over 
most of the channel whether or not the channel reverted to a parallel geometry at  
the outlet. Also, Banks et al. argued that for a channel with slowly varying walls, 
if a(x)  does not exceed a2(Re) either by too much or too far downstream, a weakly 
non-linear asymmetric disturbance may grow but would ultimately decay downstream 
where a(x) < az(Re). Our results do not contradict this, but do suggest that if the 
disturbance grows to its final non-linear form then it will persist rather than decay 
unless a (x )  drops significantly below az( Re). 

In contrast to Sobey & Drazin’s (1986) finding that the critical bifurcation at 
B2 is subcritical, Hamadiche et al. (1994) performed a non-linear analysis of JH 
flow in a finite-length channel and obtained a supercritical loss of stability, with 
no trace of a subcritical instability. However, while Hamadiche et al.’s particular 
problem may be supercritical, this result may not extend to JH  flow in general for 
a number of reasons. First, their basic JH  flow was symmetric, whereas Sobey 
& Drazin stated that while the symmetric 111 flow is stable subcritically and the 
symmetric 112 flow unstable supercritically, it is the asymmetric IVI and V1 flows 
that are unstable subcritically. A more important question, perhaps, is whether 
the geometry and boundary conditions used by Hamadiche et al. will allow a full 
non-linear disturbance to develop. They presented non-linear results for two cases, 
a = 0.1 rad with r i / r :  = lo3, and a = 0.3 rad with r: /r:  = lo2, where r: and r: give 
the positions of the upstream and downstream boundaries, respectively. Using the 
asymptotic form of the coordinate transformation in ( 3 3 ,  a channel with r: ,< I-‘ ,< r i  
in physical space maps to one of length Xd - X u  = ln(ri/rG)/2a in computational 
space. Thus Hamadiche et al.’s channels are in turn approximately 35 and 8 long in 
our computational space, much shorter than the channels of length 160 to 320 used 
in our calculations. The results presented above suggest that their channels are simply 
too short to allow the full non-linear development of the disturbance, particularly 
near B2 when there is no change in the width of the channel to abruptly initiate the 
full non-linear response. In addition, we have performed calculations in a channel 
with a = 0.1 rad (5.73”), E = 2 and X,,, = 240, with both sub- and supercritical 
Reynolds numbers (45 and 50 respectively), and in both cases an extended wave was 
obtained (table 1). Also, Hamadiche et al. calculated a non-linear perturbation to 
symmetric JH  flow where the perturbation was either zero at the inlet and outlet or 
‘periodic’ on the computational domain. In general, Hamadiche et d ’ s  conditions do 
not appear to be compatible with our solutions once the wave has developed fully, 
except possibly in extremely long channels in which there is room for the wave to 
grow and decay near the inlet and outlet, respectively, or, with periodic conditions, 
where the length of the channel is an integer multiple of the wavelength, which is not 
known a priori. 

The wavelengths obtained in our Navier-Stokes solutions were compared with 
those predicted by the linear theory of Banks et al. (1986), using their equation 
(3.3). No agreement was found: for example, with a = 2” and Re = 150 the non- 
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linear wavelength was approximately 2; times that predicted by the linear theory 
using a 112 JH flow, while for the (subcritical) case with a = 2" and Re = 125, the 
unstable linear modes obtained with IV1/V1 have real eigenvalues, i.e. they were non- 
oscillatory. Further, we are doubtful whether any linear theory will predict the final 
non-linear wavelength correctly as much of the development of the wave appears to 
be a non-linear process. A number of calculations were performed using the implicit 
unsteady version of the Navier--Stokes code (see Tutty & Pedley 1993 for details) to 
produce a time-accurate solution with the flow rate ramped up from zero. In these 
calculations the initial disturbance has a much shorter wavelength than that shown 
in e.g. figure 7, and non-linear effects were clearly significant long before the wave 
reached a steady state. In particular, there was a large-scale displacement of the core 
flow and significant eddies on the walls during much of the growth in the wavelength. 
Also, we note that for most of the runs the iterative process in the steady calculations 
mimicked this unsteady behaviour, i.e. a large-scale disturbance with a relatively short 
wavelength formed long before the calculation was fully converged. 

Because of numerical difficulties with the unsteady code (the inner iterative process 
failed to converge if the Jacobian of the mapping between the physical and com- 
putational spaces became too large), the channels used in the unsteady calculations 
were much shorter (0 < X < 85) than those used for the direct steady calculations. 
However, they were sufficiently long to confirm that both flows with and without the 
extended wave could be obtained through an unsteady process in which the flow is 
accelerated from zero to a constant mass flow rate. In particular, the upstream portion 
of the extended wave was found for the subcritical case with x = 2", Re = 125, and 
E = 2, as in the steady case. 

In this paper, a flow has been described as unstable if the flow far down the 
channel is not one of the possible JH flows. This does not of course imply that 
the cases in which a JH flow was obtained would necessarily be stable to unsteady 
modes, although when a JH flow was obtained without explicitly forcing the flow 
to be symmetric, it was a symmetric unidirectional flow, found by Sobey & Drazin 
(1986) to be subcritically stable. 

The flow pattern found when the extended wave occurs is markedly different from 
the usual steady flow in a channel with an expansion in the form of a backward- 
facing step, where, if a wave exists, it decays rapidly downstream (see e.g. Armaly 
et al. 1983; Sobey 1985). The individual flow structures in the extended wave have 
a characteristic pattern, with a large-amplitude displacement of the core flow with 
eddies generated successively on the lower and upper wall, and more vigorous flow 
and a concentration of vorticity towards the downstream ends of the eddies, leading 
to, at higher Re,  secondary separation on the wall upstream of the main core of each 
eddy (see figure 14c). These flow structures strongly resemble those found in unsteady 
flow in non-uniform channels, when a 'vortex wave' is generated by decelerating flow 
over an expansion or through a constriction (see e.g. Sobey 1985; Tutty 1992; Tutty 
& Pedley 1993). In addition to the flow patterns, the unsteady and steady results 
agree in a number of aspects: in both cases the waves are generated when the flow is 
decelerating, and, for a given geometry, the waves are relatively weak and limited in 
extent for 'low' Re (Tutty & Pedley 1993). 

This work was supported by the UK Engineering and Physical Sciences Research 
Committee through the computational facilities used for all the calculations performed 
in the study. 
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